Ext. B Characters in Unicode 3.1

Unicode Range x21000 to x210FF ( 135168 to 135423 )

𡀀
x21000
135168
𡀁
x21001
135169
𡀂
x21002
135170
𡀃
x21003
135171
𡀄
x21004
135172
𡀅
x21005
135173
𡀆
x21006
135174
𡀇
x21007
135175
𡀈
x21008
135176
𡀉
x21009
135177
𡀊
x2100A
135178
𡀋
x2100B
135179
𡀌
x2100C
135180
𡀍
x2100D
135181
𡀎
x2100E
135182
𡀏
x2100F
135183
𡀐
x21010
135184
𡀑
x21011
135185
𡀒
x21012
135186
𡀓
x21013
135187
𡀔
x21014
135188
𡀕
x21015
135189
𡀖
x21016
135190
𡀗
x21017
135191
𡀘
x21018
135192
𡀙
x21019
135193
𡀚
x2101A
135194
𡀛
x2101B
135195
𡀜
x2101C
135196
𡀝
x2101D
135197
𡀞
x2101E
135198
𡀟
x2101F
135199
𡀠
x21020
135200
𡀡
x21021
135201
𡀢
x21022
135202
𡀣
x21023
135203
𡀤
x21024
135204
𡀥
x21025
135205
𡀦
x21026
135206
𡀧
x21027
135207
𡀨
x21028
135208
𡀩
x21029
135209
𡀪
x2102A
135210
𡀫
x2102B
135211
𡀬
x2102C
135212
𡀭
x2102D
135213
𡀮
x2102E
135214
𡀯
x2102F
135215
𡀰
x21030
135216
𡀱
x21031
135217
𡀲
x21032
135218
𡀳
x21033
135219
𡀴
x21034
135220
𡀵
x21035
135221
𡀶
x21036
135222
𡀷
x21037
135223
𡀸
x21038
135224
𡀹
x21039
135225
𡀺
x2103A
135226
𡀻
x2103B
135227
𡀼
x2103C
135228
𡀽
x2103D
135229
𡀾
x2103E
135230
𡀿
x2103F
135231
𡁀
x21040
135232
𡁁
x21041
135233
𡁂
x21042
135234
𡁃
x21043
135235
𡁄
x21044
135236
𡁅
x21045
135237
𡁆
x21046
135238
𡁇
x21047
135239
𡁈
x21048
135240
𡁉
x21049
135241
𡁊
x2104A
135242
𡁋
x2104B
135243
𡁌
x2104C
135244
𡁍
x2104D
135245
𡁎
x2104E
135246
𡁏
x2104F
135247
𡁐
x21050
135248
𡁑
x21051
135249
𡁒
x21052
135250
𡁓
x21053
135251
𡁔
x21054
135252
𡁕
x21055
135253
𡁖
x21056
135254
𡁗
x21057
135255
𡁘
x21058
135256
𡁙
x21059
135257
𡁚
x2105A
135258
𡁛
x2105B
135259
𡁜
x2105C
135260
𡁝
x2105D
135261
𡁞
x2105E
135262
𡁟
x2105F
135263
𡁠
x21060
135264
𡁡
x21061
135265
𡁢
x21062
135266
𡁣
x21063
135267
𡁤
x21064
135268
𡁥
x21065
135269
𡁦
x21066
135270
𡁧
x21067
135271
𡁨
x21068
135272
𡁩
x21069
135273
𡁪
x2106A
135274
𡁫
x2106B
135275
𡁬
x2106C
135276
𡁭
x2106D
135277
𡁮
x2106E
135278
𡁯
x2106F
135279
𡁰
x21070
135280
𡁱
x21071
135281
𡁲
x21072
135282
𡁳
x21073
135283
𡁴
x21074
135284
𡁵
x21075
135285
𡁶
x21076
135286
𡁷
x21077
135287
𡁸
x21078
135288
𡁹
x21079
135289
𡁺
x2107A
135290
𡁻
x2107B
135291
𡁼
x2107C
135292
𡁽
x2107D
135293
𡁾
x2107E
135294
𡁿
x2107F
135295
𡂀
x21080
135296
𡂁
x21081
135297
𡂂
x21082
135298
𡂃
x21083
135299
𡂄
x21084
135300
𡂅
x21085
135301
𡂆
x21086
135302
𡂇
x21087
135303
𡂈
x21088
135304
𡂉
x21089
135305
𡂊
x2108A
135306
𡂋
x2108B
135307
𡂌
x2108C
135308
𡂍
x2108D
135309
𡂎
x2108E
135310
𡂏
x2108F
135311
𡂐
x21090
135312
𡂑
x21091
135313
𡂒
x21092
135314
𡂓
x21093
135315
𡂔
x21094
135316
𡂕
x21095
135317
𡂖
x21096
135318
𡂗
x21097
135319
𡂘
x21098
135320
𡂙
x21099
135321
𡂚
x2109A
135322
𡂛
x2109B
135323
𡂜
x2109C
135324
𡂝
x2109D
135325
𡂞
x2109E
135326
𡂟
x2109F
135327
𡂠
x210A0
135328
𡂡
x210A1
135329
𡂢
x210A2
135330
𡂣
x210A3
135331
𡂤
x210A4
135332
𡂥
x210A5
135333
𡂦
x210A6
135334
𡂧
x210A7
135335
𡂨
x210A8
135336
𡂩
x210A9
135337
𡂪
x210AA
135338
𡂫
x210AB
135339
𡂬
x210AC
135340
𡂭
x210AD
135341
𡂮
x210AE
135342
𡂯
x210AF
135343
𡂰
x210B0
135344
𡂱
x210B1
135345
𡂲
x210B2
135346
𡂳
x210B3
135347
𡂴
x210B4
135348
𡂵
x210B5
135349
𡂶
x210B6
135350
𡂷
x210B7
135351
𡂸
x210B8
135352
𡂹
x210B9
135353
𡂺
x210BA
135354
𡂻
x210BB
135355
𡂼
x210BC
135356
𡂽
x210BD
135357
𡂾
x210BE
135358
𡂿
x210BF
135359
𡃀
x210C0
135360
𡃁
x210C1
135361
𡃂
x210C2
135362
𡃃
x210C3
135363
𡃄
x210C4
135364
𡃅
x210C5
135365
𡃆
x210C6
135366
𡃇
x210C7
135367
𡃈
x210C8
135368
𡃉
x210C9
135369
𡃊
x210CA
135370
𡃋
x210CB
135371
𡃌
x210CC
135372
𡃍
x210CD
135373
𡃎
x210CE
135374
𡃏
x210CF
135375
𡃐
x210D0
135376
𡃑
x210D1
135377
𡃒
x210D2
135378
𡃓
x210D3
135379
𡃔
x210D4
135380
𡃕
x210D5
135381
𡃖
x210D6
135382
𡃗
x210D7
135383
𡃘
x210D8
135384
𡃙
x210D9
135385
𡃚
x210DA
135386
𡃛
x210DB
135387
𡃜
x210DC
135388
𡃝
x210DD
135389
𡃞
x210DE
135390
𡃟
x210DF
135391
𡃠
x210E0
135392
𡃡
x210E1
135393
𡃢
x210E2
135394
𡃣
x210E3
135395
𡃤
x210E4
135396
𡃥
x210E5
135397
𡃦
x210E6
135398
𡃧
x210E7
135399
𡃨
x210E8
135400
𡃩
x210E9
135401
𡃪
x210EA
135402
𡃫
x210EB
135403
𡃬
x210EC
135404
𡃭
x210ED
135405
𡃮
x210EE
135406
𡃯
x210EF
135407
𡃰
x210F0
135408
𡃱
x210F1
135409
𡃲
x210F2
135410
𡃳
x210F3
135411
𡃴
x210F4
135412
𡃵
x210F5
135413
𡃶
x210F6
135414
𡃷
x210F7
135415
𡃸
x210F8
135416
𡃹
x210F9
135417
𡃺
x210FA
135418
𡃻
x210FB
135419
𡃼
x210FC
135420
𡃽
x210FD
135421
𡃾
x210FE
135422
𡃿
x210FF
135423


Index


© Dylan W.H. Sung 2005.

This page was created using Fortran 77 programming by Dylan W.H. Sung.
All HTML code and layout in this final form can be dated as having been created on Friday 11th February 2005