Unicode Range x21000 to x210FF ( 135168 to 135423 )
𡀀 x21000 135168 |
𡀁 x21001 135169 |
𡀂 x21002 135170 |
𡀃 x21003 135171 |
𡀄 x21004 135172 |
𡀅 x21005 135173 |
𡀆 x21006 135174 |
𡀇 x21007 135175 |
𡀈 x21008 135176 |
𡀉 x21009 135177 |
𡀊 x2100A 135178 |
𡀋 x2100B 135179 |
𡀌 x2100C 135180 |
𡀍 x2100D 135181 |
𡀎 x2100E 135182 |
𡀏 x2100F 135183 |
𡀐 x21010 135184 |
𡀑 x21011 135185 |
𡀒 x21012 135186 |
𡀓 x21013 135187 |
𡀔 x21014 135188 |
𡀕 x21015 135189 |
𡀖 x21016 135190 |
𡀗 x21017 135191 |
𡀘 x21018 135192 |
𡀙 x21019 135193 |
𡀚 x2101A 135194 |
𡀛 x2101B 135195 |
𡀜 x2101C 135196 |
𡀝 x2101D 135197 |
𡀞 x2101E 135198 |
𡀟 x2101F 135199 |
𡀠 x21020 135200 |
𡀡 x21021 135201 |
𡀢 x21022 135202 |
𡀣 x21023 135203 |
𡀤 x21024 135204 |
𡀥 x21025 135205 |
𡀦 x21026 135206 |
𡀧 x21027 135207 |
𡀨 x21028 135208 |
𡀩 x21029 135209 |
𡀪 x2102A 135210 |
𡀫 x2102B 135211 |
𡀬 x2102C 135212 |
𡀭 x2102D 135213 |
𡀮 x2102E 135214 |
𡀯 x2102F 135215 |
𡀰 x21030 135216 |
𡀱 x21031 135217 |
𡀲 x21032 135218 |
𡀳 x21033 135219 |
𡀴 x21034 135220 |
𡀵 x21035 135221 |
𡀶 x21036 135222 |
𡀷 x21037 135223 |
𡀸 x21038 135224 |
𡀹 x21039 135225 |
𡀺 x2103A 135226 |
𡀻 x2103B 135227 |
𡀼 x2103C 135228 |
𡀽 x2103D 135229 |
𡀾 x2103E 135230 |
𡀿 x2103F 135231 |
𡁀 x21040 135232 |
𡁁 x21041 135233 |
𡁂 x21042 135234 |
𡁃 x21043 135235 |
𡁄 x21044 135236 |
𡁅 x21045 135237 |
𡁆 x21046 135238 |
𡁇 x21047 135239 |
𡁈 x21048 135240 |
𡁉 x21049 135241 |
𡁊 x2104A 135242 |
𡁋 x2104B 135243 |
𡁌 x2104C 135244 |
𡁍 x2104D 135245 |
𡁎 x2104E 135246 |
𡁏 x2104F 135247 |
𡁐 x21050 135248 |
𡁑 x21051 135249 |
𡁒 x21052 135250 |
𡁓 x21053 135251 |
𡁔 x21054 135252 |
𡁕 x21055 135253 |
𡁖 x21056 135254 |
𡁗 x21057 135255 |
𡁘 x21058 135256 |
𡁙 x21059 135257 |
𡁚 x2105A 135258 |
𡁛 x2105B 135259 |
𡁜 x2105C 135260 |
𡁝 x2105D 135261 |
𡁞 x2105E 135262 |
𡁟 x2105F 135263 |
𡁠 x21060 135264 |
𡁡 x21061 135265 |
𡁢 x21062 135266 |
𡁣 x21063 135267 |
𡁤 x21064 135268 |
𡁥 x21065 135269 |
𡁦 x21066 135270 |
𡁧 x21067 135271 |
𡁨 x21068 135272 |
𡁩 x21069 135273 |
𡁪 x2106A 135274 |
𡁫 x2106B 135275 |
𡁬 x2106C 135276 |
𡁭 x2106D 135277 |
𡁮 x2106E 135278 |
𡁯 x2106F 135279 |
𡁰 x21070 135280 |
𡁱 x21071 135281 |
𡁲 x21072 135282 |
𡁳 x21073 135283 |
𡁴 x21074 135284 |
𡁵 x21075 135285 |
𡁶 x21076 135286 |
𡁷 x21077 135287 |
𡁸 x21078 135288 |
𡁹 x21079 135289 |
𡁺 x2107A 135290 |
𡁻 x2107B 135291 |
𡁼 x2107C 135292 |
𡁽 x2107D 135293 |
𡁾 x2107E 135294 |
𡁿 x2107F 135295 |
𡂀 x21080 135296 |
𡂁 x21081 135297 |
𡂂 x21082 135298 |
𡂃 x21083 135299 |
𡂄 x21084 135300 |
𡂅 x21085 135301 |
𡂆 x21086 135302 |
𡂇 x21087 135303 |
𡂈 x21088 135304 |
𡂉 x21089 135305 |
𡂊 x2108A 135306 |
𡂋 x2108B 135307 |
𡂌 x2108C 135308 |
𡂍 x2108D 135309 |
𡂎 x2108E 135310 |
𡂏 x2108F 135311 |
𡂐 x21090 135312 |
𡂑 x21091 135313 |
𡂒 x21092 135314 |
𡂓 x21093 135315 |
𡂔 x21094 135316 |
𡂕 x21095 135317 |
𡂖 x21096 135318 |
𡂗 x21097 135319 |
𡂘 x21098 135320 |
𡂙 x21099 135321 |
𡂚 x2109A 135322 |
𡂛 x2109B 135323 |
𡂜 x2109C 135324 |
𡂝 x2109D 135325 |
𡂞 x2109E 135326 |
𡂟 x2109F 135327 |
𡂠 x210A0 135328 |
𡂡 x210A1 135329 |
𡂢 x210A2 135330 |
𡂣 x210A3 135331 |
𡂤 x210A4 135332 |
𡂥 x210A5 135333 |
𡂦 x210A6 135334 |
𡂧 x210A7 135335 |
𡂨 x210A8 135336 |
𡂩 x210A9 135337 |
𡂪 x210AA 135338 |
𡂫 x210AB 135339 |
𡂬 x210AC 135340 |
𡂭 x210AD 135341 |
𡂮 x210AE 135342 |
𡂯 x210AF 135343 |
𡂰 x210B0 135344 |
𡂱 x210B1 135345 |
𡂲 x210B2 135346 |
𡂳 x210B3 135347 |
𡂴 x210B4 135348 |
𡂵 x210B5 135349 |
𡂶 x210B6 135350 |
𡂷 x210B7 135351 |
𡂸 x210B8 135352 |
𡂹 x210B9 135353 |
𡂺 x210BA 135354 |
𡂻 x210BB 135355 |
𡂼 x210BC 135356 |
𡂽 x210BD 135357 |
𡂾 x210BE 135358 |
𡂿 x210BF 135359 |
𡃀 x210C0 135360 |
𡃁 x210C1 135361 |
𡃂 x210C2 135362 |
𡃃 x210C3 135363 |
𡃄 x210C4 135364 |
𡃅 x210C5 135365 |
𡃆 x210C6 135366 |
𡃇 x210C7 135367 |
𡃈 x210C8 135368 |
𡃉 x210C9 135369 |
𡃊 x210CA 135370 |
𡃋 x210CB 135371 |
𡃌 x210CC 135372 |
𡃍 x210CD 135373 |
𡃎 x210CE 135374 |
𡃏 x210CF 135375 |
𡃐 x210D0 135376 |
𡃑 x210D1 135377 |
𡃒 x210D2 135378 |
𡃓 x210D3 135379 |
𡃔 x210D4 135380 |
𡃕 x210D5 135381 |
𡃖 x210D6 135382 |
𡃗 x210D7 135383 |
𡃘 x210D8 135384 |
𡃙 x210D9 135385 |
𡃚 x210DA 135386 |
𡃛 x210DB 135387 |
𡃜 x210DC 135388 |
𡃝 x210DD 135389 |
𡃞 x210DE 135390 |
𡃟 x210DF 135391 |
𡃠 x210E0 135392 |
𡃡 x210E1 135393 |
𡃢 x210E2 135394 |
𡃣 x210E3 135395 |
𡃤 x210E4 135396 |
𡃥 x210E5 135397 |
𡃦 x210E6 135398 |
𡃧 x210E7 135399 |
𡃨 x210E8 135400 |
𡃩 x210E9 135401 |
𡃪 x210EA 135402 |
𡃫 x210EB 135403 |
𡃬 x210EC 135404 |
𡃭 x210ED 135405 |
𡃮 x210EE 135406 |
𡃯 x210EF 135407 |
𡃰 x210F0 135408 |
𡃱 x210F1 135409 |
𡃲 x210F2 135410 |
𡃳 x210F3 135411 |
𡃴 x210F4 135412 |
𡃵 x210F5 135413 |
𡃶 x210F6 135414 |
𡃷 x210F7 135415 |
𡃸 x210F8 135416 |
𡃹 x210F9 135417 |
𡃺 x210FA 135418 |
𡃻 x210FB 135419 |
𡃼 x210FC 135420 |
𡃽 x210FD 135421 |
𡃾 x210FE 135422 |
𡃿 x210FF 135423 |
© Dylan W.H. Sung 2005. This page was created using Fortran 77 programming by Dylan W.H. Sung.
All HTML code and layout in this final form can be dated as having been created on Friday 11th February 2005