Unicode Range x26000 to x260FF ( 155648 to 155903 )
𦀀 x26000 155648 |
𦀁 x26001 155649 |
𦀂 x26002 155650 |
𦀃 x26003 155651 |
𦀄 x26004 155652 |
𦀅 x26005 155653 |
𦀆 x26006 155654 |
𦀇 x26007 155655 |
𦀈 x26008 155656 |
𦀉 x26009 155657 |
𦀊 x2600A 155658 |
𦀋 x2600B 155659 |
𦀌 x2600C 155660 |
𦀍 x2600D 155661 |
𦀎 x2600E 155662 |
𦀏 x2600F 155663 |
𦀐 x26010 155664 |
𦀑 x26011 155665 |
𦀒 x26012 155666 |
𦀓 x26013 155667 |
𦀔 x26014 155668 |
𦀕 x26015 155669 |
𦀖 x26016 155670 |
𦀗 x26017 155671 |
𦀘 x26018 155672 |
𦀙 x26019 155673 |
𦀚 x2601A 155674 |
𦀛 x2601B 155675 |
𦀜 x2601C 155676 |
𦀝 x2601D 155677 |
𦀞 x2601E 155678 |
𦀟 x2601F 155679 |
𦀠 x26020 155680 |
𦀡 x26021 155681 |
𦀢 x26022 155682 |
𦀣 x26023 155683 |
𦀤 x26024 155684 |
𦀥 x26025 155685 |
𦀦 x26026 155686 |
𦀧 x26027 155687 |
𦀨 x26028 155688 |
𦀩 x26029 155689 |
𦀪 x2602A 155690 |
𦀫 x2602B 155691 |
𦀬 x2602C 155692 |
𦀭 x2602D 155693 |
𦀮 x2602E 155694 |
𦀯 x2602F 155695 |
𦀰 x26030 155696 |
𦀱 x26031 155697 |
𦀲 x26032 155698 |
𦀳 x26033 155699 |
𦀴 x26034 155700 |
𦀵 x26035 155701 |
𦀶 x26036 155702 |
𦀷 x26037 155703 |
𦀸 x26038 155704 |
𦀹 x26039 155705 |
𦀺 x2603A 155706 |
𦀻 x2603B 155707 |
𦀼 x2603C 155708 |
𦀽 x2603D 155709 |
𦀾 x2603E 155710 |
𦀿 x2603F 155711 |
𦁀 x26040 155712 |
𦁁 x26041 155713 |
𦁂 x26042 155714 |
𦁃 x26043 155715 |
𦁄 x26044 155716 |
𦁅 x26045 155717 |
𦁆 x26046 155718 |
𦁇 x26047 155719 |
𦁈 x26048 155720 |
𦁉 x26049 155721 |
𦁊 x2604A 155722 |
𦁋 x2604B 155723 |
𦁌 x2604C 155724 |
𦁍 x2604D 155725 |
𦁎 x2604E 155726 |
𦁏 x2604F 155727 |
𦁐 x26050 155728 |
𦁑 x26051 155729 |
𦁒 x26052 155730 |
𦁓 x26053 155731 |
𦁔 x26054 155732 |
𦁕 x26055 155733 |
𦁖 x26056 155734 |
𦁗 x26057 155735 |
𦁘 x26058 155736 |
𦁙 x26059 155737 |
𦁚 x2605A 155738 |
𦁛 x2605B 155739 |
𦁜 x2605C 155740 |
𦁝 x2605D 155741 |
𦁞 x2605E 155742 |
𦁟 x2605F 155743 |
𦁠 x26060 155744 |
𦁡 x26061 155745 |
𦁢 x26062 155746 |
𦁣 x26063 155747 |
𦁤 x26064 155748 |
𦁥 x26065 155749 |
𦁦 x26066 155750 |
𦁧 x26067 155751 |
𦁨 x26068 155752 |
𦁩 x26069 155753 |
𦁪 x2606A 155754 |
𦁫 x2606B 155755 |
𦁬 x2606C 155756 |
𦁭 x2606D 155757 |
𦁮 x2606E 155758 |
𦁯 x2606F 155759 |
𦁰 x26070 155760 |
𦁱 x26071 155761 |
𦁲 x26072 155762 |
𦁳 x26073 155763 |
𦁴 x26074 155764 |
𦁵 x26075 155765 |
𦁶 x26076 155766 |
𦁷 x26077 155767 |
𦁸 x26078 155768 |
𦁹 x26079 155769 |
𦁺 x2607A 155770 |
𦁻 x2607B 155771 |
𦁼 x2607C 155772 |
𦁽 x2607D 155773 |
𦁾 x2607E 155774 |
𦁿 x2607F 155775 |
𦂀 x26080 155776 |
𦂁 x26081 155777 |
𦂂 x26082 155778 |
𦂃 x26083 155779 |
𦂄 x26084 155780 |
𦂅 x26085 155781 |
𦂆 x26086 155782 |
𦂇 x26087 155783 |
𦂈 x26088 155784 |
𦂉 x26089 155785 |
𦂊 x2608A 155786 |
𦂋 x2608B 155787 |
𦂌 x2608C 155788 |
𦂍 x2608D 155789 |
𦂎 x2608E 155790 |
𦂏 x2608F 155791 |
𦂐 x26090 155792 |
𦂑 x26091 155793 |
𦂒 x26092 155794 |
𦂓 x26093 155795 |
𦂔 x26094 155796 |
𦂕 x26095 155797 |
𦂖 x26096 155798 |
𦂗 x26097 155799 |
𦂘 x26098 155800 |
𦂙 x26099 155801 |
𦂚 x2609A 155802 |
𦂛 x2609B 155803 |
𦂜 x2609C 155804 |
𦂝 x2609D 155805 |
𦂞 x2609E 155806 |
𦂟 x2609F 155807 |
𦂠 x260A0 155808 |
𦂡 x260A1 155809 |
𦂢 x260A2 155810 |
𦂣 x260A3 155811 |
𦂤 x260A4 155812 |
𦂥 x260A5 155813 |
𦂦 x260A6 155814 |
𦂧 x260A7 155815 |
𦂨 x260A8 155816 |
𦂩 x260A9 155817 |
𦂪 x260AA 155818 |
𦂫 x260AB 155819 |
𦂬 x260AC 155820 |
𦂭 x260AD 155821 |
𦂮 x260AE 155822 |
𦂯 x260AF 155823 |
𦂰 x260B0 155824 |
𦂱 x260B1 155825 |
𦂲 x260B2 155826 |
𦂳 x260B3 155827 |
𦂴 x260B4 155828 |
𦂵 x260B5 155829 |
𦂶 x260B6 155830 |
𦂷 x260B7 155831 |
𦂸 x260B8 155832 |
𦂹 x260B9 155833 |
𦂺 x260BA 155834 |
𦂻 x260BB 155835 |
𦂼 x260BC 155836 |
𦂽 x260BD 155837 |
𦂾 x260BE 155838 |
𦂿 x260BF 155839 |
𦃀 x260C0 155840 |
𦃁 x260C1 155841 |
𦃂 x260C2 155842 |
𦃃 x260C3 155843 |
𦃄 x260C4 155844 |
𦃅 x260C5 155845 |
𦃆 x260C6 155846 |
𦃇 x260C7 155847 |
𦃈 x260C8 155848 |
𦃉 x260C9 155849 |
𦃊 x260CA 155850 |
𦃋 x260CB 155851 |
𦃌 x260CC 155852 |
𦃍 x260CD 155853 |
𦃎 x260CE 155854 |
𦃏 x260CF 155855 |
𦃐 x260D0 155856 |
𦃑 x260D1 155857 |
𦃒 x260D2 155858 |
𦃓 x260D3 155859 |
𦃔 x260D4 155860 |
𦃕 x260D5 155861 |
𦃖 x260D6 155862 |
𦃗 x260D7 155863 |
𦃘 x260D8 155864 |
𦃙 x260D9 155865 |
𦃚 x260DA 155866 |
𦃛 x260DB 155867 |
𦃜 x260DC 155868 |
𦃝 x260DD 155869 |
𦃞 x260DE 155870 |
𦃟 x260DF 155871 |
𦃠 x260E0 155872 |
𦃡 x260E1 155873 |
𦃢 x260E2 155874 |
𦃣 x260E3 155875 |
𦃤 x260E4 155876 |
𦃥 x260E5 155877 |
𦃦 x260E6 155878 |
𦃧 x260E7 155879 |
𦃨 x260E8 155880 |
𦃩 x260E9 155881 |
𦃪 x260EA 155882 |
𦃫 x260EB 155883 |
𦃬 x260EC 155884 |
𦃭 x260ED 155885 |
𦃮 x260EE 155886 |
𦃯 x260EF 155887 |
𦃰 x260F0 155888 |
𦃱 x260F1 155889 |
𦃲 x260F2 155890 |
𦃳 x260F3 155891 |
𦃴 x260F4 155892 |
𦃵 x260F5 155893 |
𦃶 x260F6 155894 |
𦃷 x260F7 155895 |
𦃸 x260F8 155896 |
𦃹 x260F9 155897 |
𦃺 x260FA 155898 |
𦃻 x260FB 155899 |
𦃼 x260FC 155900 |
𦃽 x260FD 155901 |
𦃾 x260FE 155902 |
𦃿 x260FF 155903 |
© Dylan W.H. Sung 2005. This page was created using Fortran 77 programming by Dylan W.H. Sung.
All HTML code and layout in this final form can be dated as having been created on Friday 11th February 2005