Unicode Range x29400 to x294FF ( 168960 to 169215 )
𩐀 x29400 168960 |
𩐁 x29401 168961 |
𩐂 x29402 168962 |
𩐃 x29403 168963 |
𩐄 x29404 168964 |
𩐅 x29405 168965 |
𩐆 x29406 168966 |
𩐇 x29407 168967 |
𩐈 x29408 168968 |
𩐉 x29409 168969 |
𩐊 x2940A 168970 |
𩐋 x2940B 168971 |
𩐌 x2940C 168972 |
𩐍 x2940D 168973 |
𩐎 x2940E 168974 |
𩐏 x2940F 168975 |
𩐐 x29410 168976 |
𩐑 x29411 168977 |
𩐒 x29412 168978 |
𩐓 x29413 168979 |
𩐔 x29414 168980 |
𩐕 x29415 168981 |
𩐖 x29416 168982 |
𩐗 x29417 168983 |
𩐘 x29418 168984 |
𩐙 x29419 168985 |
𩐚 x2941A 168986 |
𩐛 x2941B 168987 |
𩐜 x2941C 168988 |
𩐝 x2941D 168989 |
𩐞 x2941E 168990 |
𩐟 x2941F 168991 |
𩐠 x29420 168992 |
𩐡 x29421 168993 |
𩐢 x29422 168994 |
𩐣 x29423 168995 |
𩐤 x29424 168996 |
𩐥 x29425 168997 |
𩐦 x29426 168998 |
𩐧 x29427 168999 |
𩐨 x29428 169000 |
𩐩 x29429 169001 |
𩐪 x2942A 169002 |
𩐫 x2942B 169003 |
𩐬 x2942C 169004 |
𩐭 x2942D 169005 |
𩐮 x2942E 169006 |
𩐯 x2942F 169007 |
𩐰 x29430 169008 |
𩐱 x29431 169009 |
𩐲 x29432 169010 |
𩐳 x29433 169011 |
𩐴 x29434 169012 |
𩐵 x29435 169013 |
𩐶 x29436 169014 |
𩐷 x29437 169015 |
𩐸 x29438 169016 |
𩐹 x29439 169017 |
𩐺 x2943A 169018 |
𩐻 x2943B 169019 |
𩐼 x2943C 169020 |
𩐽 x2943D 169021 |
𩐾 x2943E 169022 |
𩐿 x2943F 169023 |
𩑀 x29440 169024 |
𩑁 x29441 169025 |
𩑂 x29442 169026 |
𩑃 x29443 169027 |
𩑄 x29444 169028 |
𩑅 x29445 169029 |
𩑆 x29446 169030 |
𩑇 x29447 169031 |
𩑈 x29448 169032 |
𩑉 x29449 169033 |
𩑊 x2944A 169034 |
𩑋 x2944B 169035 |
𩑌 x2944C 169036 |
𩑍 x2944D 169037 |
𩑎 x2944E 169038 |
𩑏 x2944F 169039 |
𩑐 x29450 169040 |
𩑑 x29451 169041 |
𩑒 x29452 169042 |
𩑓 x29453 169043 |
𩑔 x29454 169044 |
𩑕 x29455 169045 |
𩑖 x29456 169046 |
𩑗 x29457 169047 |
𩑘 x29458 169048 |
𩑙 x29459 169049 |
𩑚 x2945A 169050 |
𩑛 x2945B 169051 |
𩑜 x2945C 169052 |
𩑝 x2945D 169053 |
𩑞 x2945E 169054 |
𩑟 x2945F 169055 |
𩑠 x29460 169056 |
𩑡 x29461 169057 |
𩑢 x29462 169058 |
𩑣 x29463 169059 |
𩑤 x29464 169060 |
𩑥 x29465 169061 |
𩑦 x29466 169062 |
𩑧 x29467 169063 |
𩑨 x29468 169064 |
𩑩 x29469 169065 |
𩑪 x2946A 169066 |
𩑫 x2946B 169067 |
𩑬 x2946C 169068 |
𩑭 x2946D 169069 |
𩑮 x2946E 169070 |
𩑯 x2946F 169071 |
𩑰 x29470 169072 |
𩑱 x29471 169073 |
𩑲 x29472 169074 |
𩑳 x29473 169075 |
𩑴 x29474 169076 |
𩑵 x29475 169077 |
𩑶 x29476 169078 |
𩑷 x29477 169079 |
𩑸 x29478 169080 |
𩑹 x29479 169081 |
𩑺 x2947A 169082 |
𩑻 x2947B 169083 |
𩑼 x2947C 169084 |
𩑽 x2947D 169085 |
𩑾 x2947E 169086 |
𩑿 x2947F 169087 |
𩒀 x29480 169088 |
𩒁 x29481 169089 |
𩒂 x29482 169090 |
𩒃 x29483 169091 |
𩒄 x29484 169092 |
𩒅 x29485 169093 |
𩒆 x29486 169094 |
𩒇 x29487 169095 |
𩒈 x29488 169096 |
𩒉 x29489 169097 |
𩒊 x2948A 169098 |
𩒋 x2948B 169099 |
𩒌 x2948C 169100 |
𩒍 x2948D 169101 |
𩒎 x2948E 169102 |
𩒏 x2948F 169103 |
𩒐 x29490 169104 |
𩒑 x29491 169105 |
𩒒 x29492 169106 |
𩒓 x29493 169107 |
𩒔 x29494 169108 |
𩒕 x29495 169109 |
𩒖 x29496 169110 |
𩒗 x29497 169111 |
𩒘 x29498 169112 |
𩒙 x29499 169113 |
𩒚 x2949A 169114 |
𩒛 x2949B 169115 |
𩒜 x2949C 169116 |
𩒝 x2949D 169117 |
𩒞 x2949E 169118 |
𩒟 x2949F 169119 |
𩒠 x294A0 169120 |
𩒡 x294A1 169121 |
𩒢 x294A2 169122 |
𩒣 x294A3 169123 |
𩒤 x294A4 169124 |
𩒥 x294A5 169125 |
𩒦 x294A6 169126 |
𩒧 x294A7 169127 |
𩒨 x294A8 169128 |
𩒩 x294A9 169129 |
𩒪 x294AA 169130 |
𩒫 x294AB 169131 |
𩒬 x294AC 169132 |
𩒭 x294AD 169133 |
𩒮 x294AE 169134 |
𩒯 x294AF 169135 |
𩒰 x294B0 169136 |
𩒱 x294B1 169137 |
𩒲 x294B2 169138 |
𩒳 x294B3 169139 |
𩒴 x294B4 169140 |
𩒵 x294B5 169141 |
𩒶 x294B6 169142 |
𩒷 x294B7 169143 |
𩒸 x294B8 169144 |
𩒹 x294B9 169145 |
𩒺 x294BA 169146 |
𩒻 x294BB 169147 |
𩒼 x294BC 169148 |
𩒽 x294BD 169149 |
𩒾 x294BE 169150 |
𩒿 x294BF 169151 |
𩓀 x294C0 169152 |
𩓁 x294C1 169153 |
𩓂 x294C2 169154 |
𩓃 x294C3 169155 |
𩓄 x294C4 169156 |
𩓅 x294C5 169157 |
𩓆 x294C6 169158 |
𩓇 x294C7 169159 |
𩓈 x294C8 169160 |
𩓉 x294C9 169161 |
𩓊 x294CA 169162 |
𩓋 x294CB 169163 |
𩓌 x294CC 169164 |
𩓍 x294CD 169165 |
𩓎 x294CE 169166 |
𩓏 x294CF 169167 |
𩓐 x294D0 169168 |
𩓑 x294D1 169169 |
𩓒 x294D2 169170 |
𩓓 x294D3 169171 |
𩓔 x294D4 169172 |
𩓕 x294D5 169173 |
𩓖 x294D6 169174 |
𩓗 x294D7 169175 |
𩓘 x294D8 169176 |
𩓙 x294D9 169177 |
𩓚 x294DA 169178 |
𩓛 x294DB 169179 |
𩓜 x294DC 169180 |
𩓝 x294DD 169181 |
𩓞 x294DE 169182 |
𩓟 x294DF 169183 |
𩓠 x294E0 169184 |
𩓡 x294E1 169185 |
𩓢 x294E2 169186 |
𩓣 x294E3 169187 |
𩓤 x294E4 169188 |
𩓥 x294E5 169189 |
𩓦 x294E6 169190 |
𩓧 x294E7 169191 |
𩓨 x294E8 169192 |
𩓩 x294E9 169193 |
𩓪 x294EA 169194 |
𩓫 x294EB 169195 |
𩓬 x294EC 169196 |
𩓭 x294ED 169197 |
𩓮 x294EE 169198 |
𩓯 x294EF 169199 |
𩓰 x294F0 169200 |
𩓱 x294F1 169201 |
𩓲 x294F2 169202 |
𩓳 x294F3 169203 |
𩓴 x294F4 169204 |
𩓵 x294F5 169205 |
𩓶 x294F6 169206 |
𩓷 x294F7 169207 |
𩓸 x294F8 169208 |
𩓹 x294F9 169209 |
𩓺 x294FA 169210 |
𩓻 x294FB 169211 |
𩓼 x294FC 169212 |
𩓽 x294FD 169213 |
𩓾 x294FE 169214 |
𩓿 x294FF 169215 |
© Dylan W.H. Sung 2005. This page was created using Fortran 77 programming by Dylan W.H. Sung.
All HTML code and layout in this final form can be dated as having been created on Friday 11th February 2005