Unicode Range x29700 to x297FF ( 169728 to 169983 )
𩜀 x29700 169728 |
𩜁 x29701 169729 |
𩜂 x29702 169730 |
𩜃 x29703 169731 |
𩜄 x29704 169732 |
𩜅 x29705 169733 |
𩜆 x29706 169734 |
𩜇 x29707 169735 |
𩜈 x29708 169736 |
𩜉 x29709 169737 |
𩜊 x2970A 169738 |
𩜋 x2970B 169739 |
𩜌 x2970C 169740 |
𩜍 x2970D 169741 |
𩜎 x2970E 169742 |
𩜏 x2970F 169743 |
𩜐 x29710 169744 |
𩜑 x29711 169745 |
𩜒 x29712 169746 |
𩜓 x29713 169747 |
𩜔 x29714 169748 |
𩜕 x29715 169749 |
𩜖 x29716 169750 |
𩜗 x29717 169751 |
𩜘 x29718 169752 |
𩜙 x29719 169753 |
𩜚 x2971A 169754 |
𩜛 x2971B 169755 |
𩜜 x2971C 169756 |
𩜝 x2971D 169757 |
𩜞 x2971E 169758 |
𩜟 x2971F 169759 |
𩜠 x29720 169760 |
𩜡 x29721 169761 |
𩜢 x29722 169762 |
𩜣 x29723 169763 |
𩜤 x29724 169764 |
𩜥 x29725 169765 |
𩜦 x29726 169766 |
𩜧 x29727 169767 |
𩜨 x29728 169768 |
𩜩 x29729 169769 |
𩜪 x2972A 169770 |
𩜫 x2972B 169771 |
𩜬 x2972C 169772 |
𩜭 x2972D 169773 |
𩜮 x2972E 169774 |
𩜯 x2972F 169775 |
𩜰 x29730 169776 |
𩜱 x29731 169777 |
𩜲 x29732 169778 |
𩜳 x29733 169779 |
𩜴 x29734 169780 |
𩜵 x29735 169781 |
𩜶 x29736 169782 |
𩜷 x29737 169783 |
𩜸 x29738 169784 |
𩜹 x29739 169785 |
𩜺 x2973A 169786 |
𩜻 x2973B 169787 |
𩜼 x2973C 169788 |
𩜽 x2973D 169789 |
𩜾 x2973E 169790 |
𩜿 x2973F 169791 |
𩝀 x29740 169792 |
𩝁 x29741 169793 |
𩝂 x29742 169794 |
𩝃 x29743 169795 |
𩝄 x29744 169796 |
𩝅 x29745 169797 |
𩝆 x29746 169798 |
𩝇 x29747 169799 |
𩝈 x29748 169800 |
𩝉 x29749 169801 |
𩝊 x2974A 169802 |
𩝋 x2974B 169803 |
𩝌 x2974C 169804 |
𩝍 x2974D 169805 |
𩝎 x2974E 169806 |
𩝏 x2974F 169807 |
𩝐 x29750 169808 |
𩝑 x29751 169809 |
𩝒 x29752 169810 |
𩝓 x29753 169811 |
𩝔 x29754 169812 |
𩝕 x29755 169813 |
𩝖 x29756 169814 |
𩝗 x29757 169815 |
𩝘 x29758 169816 |
𩝙 x29759 169817 |
𩝚 x2975A 169818 |
𩝛 x2975B 169819 |
𩝜 x2975C 169820 |
𩝝 x2975D 169821 |
𩝞 x2975E 169822 |
𩝟 x2975F 169823 |
𩝠 x29760 169824 |
𩝡 x29761 169825 |
𩝢 x29762 169826 |
𩝣 x29763 169827 |
𩝤 x29764 169828 |
𩝥 x29765 169829 |
𩝦 x29766 169830 |
𩝧 x29767 169831 |
𩝨 x29768 169832 |
𩝩 x29769 169833 |
𩝪 x2976A 169834 |
𩝫 x2976B 169835 |
𩝬 x2976C 169836 |
𩝭 x2976D 169837 |
𩝮 x2976E 169838 |
𩝯 x2976F 169839 |
𩝰 x29770 169840 |
𩝱 x29771 169841 |
𩝲 x29772 169842 |
𩝳 x29773 169843 |
𩝴 x29774 169844 |
𩝵 x29775 169845 |
𩝶 x29776 169846 |
𩝷 x29777 169847 |
𩝸 x29778 169848 |
𩝹 x29779 169849 |
𩝺 x2977A 169850 |
𩝻 x2977B 169851 |
𩝼 x2977C 169852 |
𩝽 x2977D 169853 |
𩝾 x2977E 169854 |
𩝿 x2977F 169855 |
𩞀 x29780 169856 |
𩞁 x29781 169857 |
𩞂 x29782 169858 |
𩞃 x29783 169859 |
𩞄 x29784 169860 |
𩞅 x29785 169861 |
𩞆 x29786 169862 |
𩞇 x29787 169863 |
𩞈 x29788 169864 |
𩞉 x29789 169865 |
𩞊 x2978A 169866 |
𩞋 x2978B 169867 |
𩞌 x2978C 169868 |
𩞍 x2978D 169869 |
𩞎 x2978E 169870 |
𩞏 x2978F 169871 |
𩞐 x29790 169872 |
𩞑 x29791 169873 |
𩞒 x29792 169874 |
𩞓 x29793 169875 |
𩞔 x29794 169876 |
𩞕 x29795 169877 |
𩞖 x29796 169878 |
𩞗 x29797 169879 |
𩞘 x29798 169880 |
𩞙 x29799 169881 |
𩞚 x2979A 169882 |
𩞛 x2979B 169883 |
𩞜 x2979C 169884 |
𩞝 x2979D 169885 |
𩞞 x2979E 169886 |
𩞟 x2979F 169887 |
𩞠 x297A0 169888 |
𩞡 x297A1 169889 |
𩞢 x297A2 169890 |
𩞣 x297A3 169891 |
𩞤 x297A4 169892 |
𩞥 x297A5 169893 |
𩞦 x297A6 169894 |
𩞧 x297A7 169895 |
𩞨 x297A8 169896 |
𩞩 x297A9 169897 |
𩞪 x297AA 169898 |
𩞫 x297AB 169899 |
𩞬 x297AC 169900 |
𩞭 x297AD 169901 |
𩞮 x297AE 169902 |
𩞯 x297AF 169903 |
𩞰 x297B0 169904 |
𩞱 x297B1 169905 |
𩞲 x297B2 169906 |
𩞳 x297B3 169907 |
𩞴 x297B4 169908 |
𩞵 x297B5 169909 |
𩞶 x297B6 169910 |
𩞷 x297B7 169911 |
𩞸 x297B8 169912 |
𩞹 x297B9 169913 |
𩞺 x297BA 169914 |
𩞻 x297BB 169915 |
𩞼 x297BC 169916 |
𩞽 x297BD 169917 |
𩞾 x297BE 169918 |
𩞿 x297BF 169919 |
𩟀 x297C0 169920 |
𩟁 x297C1 169921 |
𩟂 x297C2 169922 |
𩟃 x297C3 169923 |
𩟄 x297C4 169924 |
𩟅 x297C5 169925 |
𩟆 x297C6 169926 |
𩟇 x297C7 169927 |
𩟈 x297C8 169928 |
𩟉 x297C9 169929 |
𩟊 x297CA 169930 |
𩟋 x297CB 169931 |
𩟌 x297CC 169932 |
𩟍 x297CD 169933 |
𩟎 x297CE 169934 |
𩟏 x297CF 169935 |
𩟐 x297D0 169936 |
𩟑 x297D1 169937 |
𩟒 x297D2 169938 |
𩟓 x297D3 169939 |
𩟔 x297D4 169940 |
𩟕 x297D5 169941 |
𩟖 x297D6 169942 |
𩟗 x297D7 169943 |
𩟘 x297D8 169944 |
𩟙 x297D9 169945 |
𩟚 x297DA 169946 |
𩟛 x297DB 169947 |
𩟜 x297DC 169948 |
𩟝 x297DD 169949 |
𩟞 x297DE 169950 |
𩟟 x297DF 169951 |
𩟠 x297E0 169952 |
𩟡 x297E1 169953 |
𩟢 x297E2 169954 |
𩟣 x297E3 169955 |
𩟤 x297E4 169956 |
𩟥 x297E5 169957 |
𩟦 x297E6 169958 |
𩟧 x297E7 169959 |
𩟨 x297E8 169960 |
𩟩 x297E9 169961 |
𩟪 x297EA 169962 |
𩟫 x297EB 169963 |
𩟬 x297EC 169964 |
𩟭 x297ED 169965 |
𩟮 x297EE 169966 |
𩟯 x297EF 169967 |
𩟰 x297F0 169968 |
𩟱 x297F1 169969 |
𩟲 x297F2 169970 |
𩟳 x297F3 169971 |
𩟴 x297F4 169972 |
𩟵 x297F5 169973 |
𩟶 x297F6 169974 |
𩟷 x297F7 169975 |
𩟸 x297F8 169976 |
𩟹 x297F9 169977 |
𩟺 x297FA 169978 |
𩟻 x297FB 169979 |
𩟼 x297FC 169980 |
𩟽 x297FD 169981 |
𩟾 x297FE 169982 |
𩟿 x297FF 169983 |
© Dylan W.H. Sung 2005. This page was created using Fortran 77 programming by Dylan W.H. Sung.
All HTML code and layout in this final form can be dated as having been created on Friday 11th February 2005