Unicode Range x29800 to x298FF ( 169984 to 170239 )
𩠀 x29800 169984 |
𩠁 x29801 169985 |
𩠂 x29802 169986 |
𩠃 x29803 169987 |
𩠄 x29804 169988 |
𩠅 x29805 169989 |
𩠆 x29806 169990 |
𩠇 x29807 169991 |
𩠈 x29808 169992 |
𩠉 x29809 169993 |
𩠊 x2980A 169994 |
𩠋 x2980B 169995 |
𩠌 x2980C 169996 |
𩠍 x2980D 169997 |
𩠎 x2980E 169998 |
𩠏 x2980F 169999 |
𩠐 x29810 170000 |
𩠑 x29811 170001 |
𩠒 x29812 170002 |
𩠓 x29813 170003 |
𩠔 x29814 170004 |
𩠕 x29815 170005 |
𩠖 x29816 170006 |
𩠗 x29817 170007 |
𩠘 x29818 170008 |
𩠙 x29819 170009 |
𩠚 x2981A 170010 |
𩠛 x2981B 170011 |
𩠜 x2981C 170012 |
𩠝 x2981D 170013 |
𩠞 x2981E 170014 |
𩠟 x2981F 170015 |
𩠠 x29820 170016 |
𩠡 x29821 170017 |
𩠢 x29822 170018 |
𩠣 x29823 170019 |
𩠤 x29824 170020 |
𩠥 x29825 170021 |
𩠦 x29826 170022 |
𩠧 x29827 170023 |
𩠨 x29828 170024 |
𩠩 x29829 170025 |
𩠪 x2982A 170026 |
𩠫 x2982B 170027 |
𩠬 x2982C 170028 |
𩠭 x2982D 170029 |
𩠮 x2982E 170030 |
𩠯 x2982F 170031 |
𩠰 x29830 170032 |
𩠱 x29831 170033 |
𩠲 x29832 170034 |
𩠳 x29833 170035 |
𩠴 x29834 170036 |
𩠵 x29835 170037 |
𩠶 x29836 170038 |
𩠷 x29837 170039 |
𩠸 x29838 170040 |
𩠹 x29839 170041 |
𩠺 x2983A 170042 |
𩠻 x2983B 170043 |
𩠼 x2983C 170044 |
𩠽 x2983D 170045 |
𩠾 x2983E 170046 |
𩠿 x2983F 170047 |
𩡀 x29840 170048 |
𩡁 x29841 170049 |
𩡂 x29842 170050 |
𩡃 x29843 170051 |
𩡄 x29844 170052 |
𩡅 x29845 170053 |
𩡆 x29846 170054 |
𩡇 x29847 170055 |
𩡈 x29848 170056 |
𩡉 x29849 170057 |
𩡊 x2984A 170058 |
𩡋 x2984B 170059 |
𩡌 x2984C 170060 |
𩡍 x2984D 170061 |
𩡎 x2984E 170062 |
𩡏 x2984F 170063 |
𩡐 x29850 170064 |
𩡑 x29851 170065 |
𩡒 x29852 170066 |
𩡓 x29853 170067 |
𩡔 x29854 170068 |
𩡕 x29855 170069 |
𩡖 x29856 170070 |
𩡗 x29857 170071 |
𩡘 x29858 170072 |
𩡙 x29859 170073 |
𩡚 x2985A 170074 |
𩡛 x2985B 170075 |
𩡜 x2985C 170076 |
𩡝 x2985D 170077 |
𩡞 x2985E 170078 |
𩡟 x2985F 170079 |
𩡠 x29860 170080 |
𩡡 x29861 170081 |
𩡢 x29862 170082 |
𩡣 x29863 170083 |
𩡤 x29864 170084 |
𩡥 x29865 170085 |
𩡦 x29866 170086 |
𩡧 x29867 170087 |
𩡨 x29868 170088 |
𩡩 x29869 170089 |
𩡪 x2986A 170090 |
𩡫 x2986B 170091 |
𩡬 x2986C 170092 |
𩡭 x2986D 170093 |
𩡮 x2986E 170094 |
𩡯 x2986F 170095 |
𩡰 x29870 170096 |
𩡱 x29871 170097 |
𩡲 x29872 170098 |
𩡳 x29873 170099 |
𩡴 x29874 170100 |
𩡵 x29875 170101 |
𩡶 x29876 170102 |
𩡷 x29877 170103 |
𩡸 x29878 170104 |
𩡹 x29879 170105 |
𩡺 x2987A 170106 |
𩡻 x2987B 170107 |
𩡼 x2987C 170108 |
𩡽 x2987D 170109 |
𩡾 x2987E 170110 |
𩡿 x2987F 170111 |
𩢀 x29880 170112 |
𩢁 x29881 170113 |
𩢂 x29882 170114 |
𩢃 x29883 170115 |
𩢄 x29884 170116 |
𩢅 x29885 170117 |
𩢆 x29886 170118 |
𩢇 x29887 170119 |
𩢈 x29888 170120 |
𩢉 x29889 170121 |
𩢊 x2988A 170122 |
𩢋 x2988B 170123 |
𩢌 x2988C 170124 |
𩢍 x2988D 170125 |
𩢎 x2988E 170126 |
𩢏 x2988F 170127 |
𩢐 x29890 170128 |
𩢑 x29891 170129 |
𩢒 x29892 170130 |
𩢓 x29893 170131 |
𩢔 x29894 170132 |
𩢕 x29895 170133 |
𩢖 x29896 170134 |
𩢗 x29897 170135 |
𩢘 x29898 170136 |
𩢙 x29899 170137 |
𩢚 x2989A 170138 |
𩢛 x2989B 170139 |
𩢜 x2989C 170140 |
𩢝 x2989D 170141 |
𩢞 x2989E 170142 |
𩢟 x2989F 170143 |
𩢠 x298A0 170144 |
𩢡 x298A1 170145 |
𩢢 x298A2 170146 |
𩢣 x298A3 170147 |
𩢤 x298A4 170148 |
𩢥 x298A5 170149 |
𩢦 x298A6 170150 |
𩢧 x298A7 170151 |
𩢨 x298A8 170152 |
𩢩 x298A9 170153 |
𩢪 x298AA 170154 |
𩢫 x298AB 170155 |
𩢬 x298AC 170156 |
𩢭 x298AD 170157 |
𩢮 x298AE 170158 |
𩢯 x298AF 170159 |
𩢰 x298B0 170160 |
𩢱 x298B1 170161 |
𩢲 x298B2 170162 |
𩢳 x298B3 170163 |
𩢴 x298B4 170164 |
𩢵 x298B5 170165 |
𩢶 x298B6 170166 |
𩢷 x298B7 170167 |
𩢸 x298B8 170168 |
𩢹 x298B9 170169 |
𩢺 x298BA 170170 |
𩢻 x298BB 170171 |
𩢼 x298BC 170172 |
𩢽 x298BD 170173 |
𩢾 x298BE 170174 |
𩢿 x298BF 170175 |
𩣀 x298C0 170176 |
𩣁 x298C1 170177 |
𩣂 x298C2 170178 |
𩣃 x298C3 170179 |
𩣄 x298C4 170180 |
𩣅 x298C5 170181 |
𩣆 x298C6 170182 |
𩣇 x298C7 170183 |
𩣈 x298C8 170184 |
𩣉 x298C9 170185 |
𩣊 x298CA 170186 |
𩣋 x298CB 170187 |
𩣌 x298CC 170188 |
𩣍 x298CD 170189 |
𩣎 x298CE 170190 |
𩣏 x298CF 170191 |
𩣐 x298D0 170192 |
𩣑 x298D1 170193 |
𩣒 x298D2 170194 |
𩣓 x298D3 170195 |
𩣔 x298D4 170196 |
𩣕 x298D5 170197 |
𩣖 x298D6 170198 |
𩣗 x298D7 170199 |
𩣘 x298D8 170200 |
𩣙 x298D9 170201 |
𩣚 x298DA 170202 |
𩣛 x298DB 170203 |
𩣜 x298DC 170204 |
𩣝 x298DD 170205 |
𩣞 x298DE 170206 |
𩣟 x298DF 170207 |
𩣠 x298E0 170208 |
𩣡 x298E1 170209 |
𩣢 x298E2 170210 |
𩣣 x298E3 170211 |
𩣤 x298E4 170212 |
𩣥 x298E5 170213 |
𩣦 x298E6 170214 |
𩣧 x298E7 170215 |
𩣨 x298E8 170216 |
𩣩 x298E9 170217 |
𩣪 x298EA 170218 |
𩣫 x298EB 170219 |
𩣬 x298EC 170220 |
𩣭 x298ED 170221 |
𩣮 x298EE 170222 |
𩣯 x298EF 170223 |
𩣰 x298F0 170224 |
𩣱 x298F1 170225 |
𩣲 x298F2 170226 |
𩣳 x298F3 170227 |
𩣴 x298F4 170228 |
𩣵 x298F5 170229 |
𩣶 x298F6 170230 |
𩣷 x298F7 170231 |
𩣸 x298F8 170232 |
𩣹 x298F9 170233 |
𩣺 x298FA 170234 |
𩣻 x298FB 170235 |
𩣼 x298FC 170236 |
𩣽 x298FD 170237 |
𩣾 x298FE 170238 |
𩣿 x298FF 170239 |
© Dylan W.H. Sung 2005. This page was created using Fortran 77 programming by Dylan W.H. Sung.
All HTML code and layout in this final form can be dated as having been created on Friday 11th February 2005